Định lý Talet trong tam giác và những hệ quả của định lý

Định lý Talet trong tam giác và những hệ quả của định lý là một phần kiến thức quan trọng trong chương trình Toán học. Cùng tìm hiểu với GiaiNgo qua bài viết này nhé.

Định lý Talet trong tam giác là một trong những định lý được sử dụng nhiều nhất trong toán học. Với định lý này, ta có thể chứng minh nhiều hệ thức trong hình học và ứng dụng vào tính toán thực tế. Cùng GiaiNgo tìm hiểu chi tiết nhé!

Định lý Talet trong tam giác

Định lý Talet trong tam giác hay còn được gọi là định lý Thales là một định lý có vai trò rất quan trọng trong lĩnh vực hình học nói riêng và trong Toán học nói chung.

Định lý này được đặt theo tên của một nhà Toán học đến từ Hy Lạp là Thales.

Định lý thuận

Định lí Talet trong tam giác được phát biểu rằng khi có 1 đường thẳng song song với 1 cạnh của tam giác. Đồng thời cắt 2 cạnh còn lại thì sẽ định ra trên 2 cạnh được cắt đó những đoạn thẳng có tỷ lệ tương ứng nhau.

Cho tam giác ABC như hình vẽ, BC // B’C’ thì:

dinh ly talet trong tam giac

Định lý đảo

Định lý Talet trong tam giác là một định lý mang tính chất 2 chiều, đó là chiều thuận và chiều đảo ngược.

Định lý Talet đảo được phát biểu như sau: Nếu trong một tam giác, một đường thẳng cắt 2 cạnh của tam giác đó và định ra trên 2 cạnh được cắt những đoạn thẳng tương ứng tỉ lệ với nhau thì đường thẳng đó sẽ song song với cạnh còn lại.

Xem thêm :  Mơ thấy mèo điềm báo lành hay xấu? Mơ thấy mèo đánh con gì?

Cho tam giác ABC như hình vẽ, nếu ta có:

dinh ly talet dao trong tam giac

Chú ý: Hệ quả trên vẫn đúng cho trường hợp đường thẳng a song song với một cạnh của tam giác và cắt phần kéo dài của hai cạnh còn lại.

Những hệ quả của định lý Talet trong tam giác

Hệ quả 1

Một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì sẽ tạo ra một tam giác mới có 3 cạnh tỉ lệ với 3 cạnh của tam giác ban đầu.

Hệ quả 2

Một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì sẽ tạo ra một tam giác mới đồng dạng với tam giác ban đầu.

Hệ quả 3

Hệ quả 3 – Talet mở rộng: Ba đường thẳng đồng quy thì chắn trên hai đường thẳng song song các cặp đoạn thẳng tỉ lệ.

he qua 3 dinh ly talet

Xem thêm:

Bài tập minh họa định lý Talet trong tam giác SGK lớp 8

Trả lời câu hỏi Toán 8 Tập 2 Bài 1 trang 56

Cho AB = 3cm; CD = 5cm; AB/CD=?, EF = 4dm; MN = 7dm; EF/MN= ?

Lời giải:

AB/CD= 3/5

EF/MN= 4/7

Trả lời câu hỏi Toán 8 Tập 2 Bài 1 trang 57

Cho bốn đoạn thẳng AB, CD, A’B’, C’D’. So sánh tỉ số

Lời giải:

AB/CD= 2/3, A’B’/C’D’=4/6=2/3

Vậy AB/CD = A’B’/C’D’

Trả lời câu hỏi Toán 8 Tập 2 Bài 1 trang 57

Vẽ tam giác ABC trên giấy kẻ học sinh như trên hình 3. Dựng đường thẳng a song song với cạnh BC, cắt hai cạnh AB, AC theo thứ tự tại B’ và C’.

Xem thêm :  Minh Kontum là ai? Thí sinh Olympia đẹp như OPPA Hàn Quốc

Đường thẳng a định ra trên cạnh AB ba đoạn thẳng AB’, B’B và AB, và định ra trên cạnh AC ba đoạn thẳng tương ứng là AC’, C’C và AC. So sánh các tỉ số:

Lời giải:

định lý talet trong tam giác

Bài 1 (trang 58 SGK Toán 8 tập 2)

Viết tỉ số của hai đoạn thẳng có độ dài như sau:

Lời giải:

a) Ta có AB = 5cm và CD = 15 cm

AB/ CD= 5/15=1/3

b) EF= 48 cm, GH = 16 dm = 160 cm

EF/GH=48/160= 3/10

c) PQ= 1,2m = 120cm, MN= 24cm

PQ/MN=120/24=5

Bài 2 (trang 59 SGK Toán 8 tập 2)

Cho biết AB/CD=3/4 và CD bằng 12cm. Tính độ dài của AB.

Lời giải:

Ta có: AB/CD=3/4 mà CD= 12cm nên AB=(12×3)/4=9cm

Vậy AB= 9cm.

Bài 3 (trang 59 SGK Toán 8 tập 2)

Cho biết độ dài của AB gấp 5 lần độ dài của CD và độ dài của A’B’ gấp 12 lần độ dài của CD. Tính tỉ số của hai đoạn thẳng AB và A’B’.

Lời giải:

Độ dài AB gấp 5 lần độ dài của CD nên AB = 5CD.

Độ dài A’B’ gấp 12 lần độ dài của CD nên A’B’ = 12CD.

⇒ Tỉ số của hai đoạn thẳng AB và A’B’ là:

AB/A’B’= 5CD/12CD=5/12

Bài 4 (trang 59 SGK Toán 8 tập 2)

định lý talet trong tam giác

Bài 5 (trang 59 SGK Toán 8 tập 2)

Tính x trong các trường hợp sau

a) Ta có: MN // BC

Áp dụng định lý Talet trong tam giác ta có: AM/MB= AN/NC

Mà AM = 4, AN = 5, NC = AC – AN = 8,5 – 5 = 3,5

Xem thêm :  Teencode là gì? Ngôn ngữ khiến 7X, 8X phải đau đầu

Suy ra: 4/x=5/3.5

Vậy x=2.8

b) Ta có PQ // EF

Áp dụng định lý Talet trong tam giác DEF ta có: DP/PE= DQ/QF

Mà DP = x, PE = 10,5 ; DQ = 9 ; QF = DF – DQ = 24 – 9 = 15

Do đó ta có :

⇒ 15x = 9.10,5

⇔ 15x = 94,5

⇔ x = 94,5:15 = 6,3

Vậy x = 6,3.

Vừa rồi GiaiNgo đã chia sẻ cho bạn định lý Talet trong tam giác và những hệ quả của nó. Đừng quên cập nhật những kiến thức mới qua bài viết sau của GiaiNgo nhé!

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *